
 

 

 

by 

Rahul P. Naik 

 

Supervisor: 

Dr. Nicolas T. Courtois 

 

MSc Information Security 

DEPARTMENT OF COMPUTER SCIENCE 

 
September 2, 2013

                                                           
1 This report is submitted as part requirement for the MSc Degree in Information Security at 
University College London. It is substantially the result of my own work except where 
explicitly indicated in the text. The report may be freely copied and distributed provided the 
source is explicitly acknowledged. Copyright © Rahul Naik 2013. 

Optimising the SHA256 Hashing Algorithm for 

Faster and More Efficient Bitcoin Mining1 



Abstract 

Since its inception in early 2009, Bitcoin has attracted a substantial amount of users and the 

popularity of this decentralised virtual currency is rapidly increasing day by day. Over the 

years, an arms race for mining hardware has resulted with miners requiring more and more 

hashing power in order to remain alive in the Bitcoin mining arena. The hashing rate and the 

energy consumption of the mining devices used are of utmost importance for the profit 

margin in Bitcoin mining. As Bitcoin mining is fundamentally all about computing the double 

SHA256 hash of a certain stream of inputs many times, a lot of research has been aimed 

towards hardware optimisations of the SHA256 Hash Standard implementations. However, 

no effort has been made in order to optimise the SHA256 algorithm specific to Bitcoin 

mining.  

This thesis covers the broad field of Bitcoin, Bitcoin mining and the SHA256 hashing 

algorithm. Rather than hardware based optimisations, the main focus of this thesis is 

targeted towards optimising the SHA256 hashing algorithm specific to the Bitcoin mining 

protocol so that mining can be performed faster and in a more efficient manner. These 

optimisations take advantage of the fixed or predictable nature of the input stream of data 

in Bitcoin mining and various shortcuts are discussed to calculate particular rounds or 

message schedules that achieve the same computational results as off-the-shelf SHA256. 

Although these algorithm based optimisations can no longer allow generic SHA256 hashing, 

they are meant to radically optimise the process of Bitcoin mining. It has been claimed that 

if these improvements are to be implemented in mining devices, the double SHA256 

computation reduces to a 1.8624 SHA256 computation which essentially means a faster 

hashing rate and lots of energy savings. 

Keywords: Bitcoin, hash, SHA256, mining, ASIC, FPGA, algorithm optimisations, compression 

function, message schedule, Savings Factor, block, transactions, proof-of-work.
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Chapter 1: Introduction 

Bitcoin is a global, decentralised, pseudonymous virtual currency scheme that is not backed 

by any government or other legal entity. It was invented [42] and instigated back in 2008 by 

Satoshi Nakamoto (a pseudonym). Bitcoin depends on peer-to-peer networking and basic 

but ingeniously applied cryptography techniques to maintain its integrity and authenticity. It 

is based on the principal that for the currency to have any value, the creation of new 

Bitcoins must be limited. Bitcoins are thus slowly minted into existence through a 

computationally intensive process called Bitcoin Mining and Proof-of-Work generation. 

With the current market price [4] [41] of about 1 BTC = $130 as compared to about 1 BTC = 

$0.2 exactly 3 years ago, the Bitcoin virtual currency is an apt example that all big things 

start small. With more vendors and merchants turning towards Bitcoin as a mode of 

payment as well as people starting to look at Bitcoin as digital gold [51] and a safe haven to 

the economic turmoil [17] [49] of fiat currencies, Bitcoin is definitely gaining popularity fast. 

With more than 60000 Bitcoin transactions being conducted per day [11] and the current 

incentive of 25BTC ≈ $3200 for every block mined, Bitcoin mining has also become very 

attractive as a prospective business. This attraction has led to many miners competing to be 

the first to mine a new Block and be awarded with the mining reward. As a result, both the 

Bitcoin network hash rate and difficulty are skyrocketing which is making it even harder to 

mine Bitcoins. Today, Bitcoin mining and has become computationally very intensive and 

with more and more participants joining this hunt to mine Bitcoins, the electricity 

consumption of the Bitcoin network has also skyrocketed. Current data estimates [11] that 

per day about 8700 megawatt hours of electricity is being spent on mining which on average 

amounts to more than 1 and a quarter million dollars being spent on electricity per day by 

the Bitcoin miners. Many have already started speculating that Bitcoin mining is a hazard to 

the environment [12] while others are against that conception [28]. 

With the view of trying to stay alive in the Bitcoin mining arena, miners have entered into an 

arms race for Hashing power. As a result, many businesses2 have emerged that provide 

specialised but expensive mining devices. Bitcoin mining in its infancy used CPUs which later 

                                                           
2
 Butterfly Labs - http://www.butterflylabs.com/, Cointerra - http://cointerra.com/, Bitfury - 

http://www.bitfury.org/, KnCMiner - https://www.kncminer.com/ 

http://www.butterflylabs.com/
http://cointerra.com/
http://www.bitfury.org/
https://www.kncminer.com/


2 Chapter 1: Introduction 

 

evolved into using faster but more power consuming GPUs. After that, miners turned to 

FPGAs and finally in mid 2013, high speed dedicated ASIC devices entered the market. This 

has left the earlier methods of mining obsolete as they simply cannot compete with the 

hashing rate of ASICs. These ASIC mining devices offer huge hashing rates but higher energy 

consumption as well. Some dedicated ASIC chips, claim to provide very high hashing rates 

(Around 4003-6004 GH/s). A 2 TH/s ASIC mining device5 has also been announced by 

Cointerra.  

1.1 Motivation and Goal 

Much research effort has been spent on hardware optimisations and improvements on the 

SHA256 hashing algorithm which forms the basis of Bitcoin mining. These hardware 

optimisations have been aimed towards generic SHA256 hashing and are currently 

implemented and used in most mining devices. Improvements in SHA256 hardware have 

greatly increased the throughput and efficient implementations have also decreased the 

power consumption of the device. Mining typically involves calculating the double SHA256 

hash of an input stream of data and the mining devices in the market use SHA256 cores to 

perform this double hashing during the mining computations. 

The question now arises if there is a more efficient way to mine Bitcoins where mining 

devices would calculate something less than a double SHA256 and end up with the same 

result. Till date, to the best of the author’s knowledge, no research effort has been made in 

optimising the SHA256 algorithm specific to Bitcoin mining. If this was possible and 

improvements at the SHA256 algorithm level were found, this would have a tremendous 

impact in the Bitcoin community as mining could then be performed faster and that too in a 

more efficient manner. Mining devices could then have a higher hash rate with the same 

power consumption as before. In other words, mining devices could have the same hashing 

rate but with a lower power consumption. 

We thus study the SHA256 hashing algorithm and the Bitcoin block Hashing algorithm in 

detail and try and understand how the double SHA256 hashing can be improved so that 

                                                           
3
 See Bitfury 400GH/s MiningRig http://thegenesisblock.com/bitfury-400-ghs-bitcoin-mining-rig-hits-us-shores/ 

4
 See BFL 28nm Technology Bitcoin Mining Card - The Monarch http://thegenesisblock.com/butterfly-labs-

tests-market-tolerance-with-600-ghs-pre-order-announcement/ 
5
 See TerraMiner IV http://thegenesisblock.com/cointerra-announces-2ths-asic-bitcoin-miner-for-15750/ 

http://thegenesisblock.com/bitfury-400-ghs-bitcoin-mining-rig-hits-us-shores/
http://thegenesisblock.com/butterfly-labs-tests-market-tolerance-with-600-ghs-pre-order-announcement/
http://thegenesisblock.com/butterfly-labs-tests-market-tolerance-with-600-ghs-pre-order-announcement/
http://thegenesisblock.com/cointerra-announces-2ths-asic-bitcoin-miner-for-15750/
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lesser number of operations would need to be performed in order to achieve the same 

result as traditional double SHA256 hashing. The goal would be to take advantage of the 

fixed or predictable nature of the input data stream in Bitcoin mining. Any improvements 

achieved would potentially be worth a lot of money as they will bring about huge savings in 

the miners’ electricity bills. 

1.2 Structure of the Thesis 

The rest of the thesis is organised as follows. Chapter 2 will contain an overview of the 

Bitcoin system and will touch upon important topics related to the Bitcoin protocol and will 

serve as background knowledge for what follows. Chapter 3 will be a detailed explanation of 

the SHA256 hashing algorithm which forms the basis of Bitcoin mining. Chapter 4 will 

concentrate on the hardware implementation of the SHA256 hashing algorithm. This 

chapter will also focus on a survey of the past research made in optimising SHA256 in 

hardware. Chapter 5 will bring us back to our research problem in question i.e. the Bitcoin 

block hashing algorithm which is the algorithm used in Bitcoin Mining. This chapter 

discusses what data is typically hashed by the miners in order to produce a block hash that 

will be accepted by the Bitcoin network. It also discusses the important point of the 

frequency by which the data changes which is a major factor involved in the suggestions of 

the optimisations. Chapter 6 is the most important that discusses the contribution of this 

thesis. Optimisations in the SHA256 hashing algorithm that are specific to Bitcoin mining 

have been suggested in ample detail in this chapter. Next, a quantitative analysis is 

performed in Chapter 7 that details the amount of savings made as a result of the suggested 

optimisations. These results are discussed in this chapter titled as Discussion. We also touch 

upon certain limitations as well as the future work associated with the aforementioned 

contributions. Finally, we finish with a conclusion that summarises the contributions made 

in this thesis. 
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Chapter 2: An Overview of Bitcoin 

2.1 What is Bitcoin? 

Bitcoin [8] [44] [46] [50] is a completely decentralised electronic global electronic currency 

that is not backed by any government or legal entity. It was designed, developed and 

launched by a pseudonym by the name of Satoshi Nakamoto back in 2009. Some wonder 

[54] if the pseudonym is actually a clever blend of the four technological companies viz. 

SAmsung, TOSHIba, NAKAmichi and MOTOrola. Others speculate if it is not a single person 

but a group of individuals sitting at NSA or Google. Regardless, Satoshi Nakamoto exhibited 

his invention though his paper [42] in 2008 right about the time when the global financial 

crisis had hit the world. The paper discussed the concept of a purely peer-to-peer version of 

electronic currency without the need of a trusted third party or any financial institution. He 

proposed that his electronic payment system would purely rely on cryptographic proof 

instead of the ancient methodology that relied upon trust. This would allow any two parties 

to transact directly amongst each other without the need of a trusted third party to validate 

their transaction. Satoshi Nakamoto also discussed how the double-spending problem was 

addressed in his proposal without the use of third parties. He discusses the concept of 

hashing Bitcoin transactions into the longest hash-based proof-of-work which will make it 

possible for anyone in the network to verify transactions. 

Bitcoin is considered to be a pseudonymous mode of payment meaning that it is partly-

anonymous. This in turn means that one can practically enter into a Bitcoin transaction with 

anyone in the world without having to disclose one’s identity. Although there are ways to 

link a person’s identity with his Bitcoin transactions, there are also some steps that can be 

used to evade this. For a detailed analysis of the anonymity of the Bitcoin system, refer to 

[45]. Although Bitcoin is flourishing more than ever, its legal status and their implications 

still remain uncertain and [29] [32] try to cover and address the legal concerns and aspects 

that surround Bitcoin. Witnessing the success of Bitcoin, many similar currencies [24] [53]  

have emerged that have actually forked from the same Bitcoin open-source code but with 

minor technical and administrative alterations [53]. 
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2.1.1 Transactions 

A Bitcoin transaction is basically a digitally signed chunk of data that is collected into blocks 

and broadcast into the peer-to-peer Bitcoin network. Bob can transfer Bitcoins to Alice for 

her services from the Bitcoins Bob earned from previous transactions. Bob could have been 

paid by someone else or Bob could have exchanged his fiat currency in exchange for Bitcoins 

using a Bitcoin exchange service like Mt. Gox [41]. Bob could have even mined those 

Bitcoins and/or would have gained Bitcoins as transaction fees. The point is that Bitcoin are 

exchanged through transactions and authenticity of these transactions is maintained using 

ECDSA [1] [31] signatures. The recipient needs proof that no double spending has occurred 

in the current transaction and this has been achieved in Bitcoin by making each node of the 

Bitcoin network aware of all transactions. Transactions can be seen as records that move 

Bitcoins to new addresses. A transaction will typically have one or more inputs and outputs 

where Bitcoins from the inputs are reassigned to one or more recipient addresses in the 

outputs. In each transaction, the sum of Bitcoins in all inputs must be more than or equal to 

the sum of Bitcoins in the outputs. If Bitcoins in the inputs are greater than the outputs, the 

difference is considered as a transaction fee which can be set at the discretion of the payer. 

The general format of a Bitcoin transaction can be found in [9]. Detailed information on all 

Bitcoin transactions conducted till date can be found at [3]. 

2.1.2 Blocks 

A block is a collection of all or some of the most recent Bitcoin transactions that do not exist 

in any previous blocks. New blocks are created through a process called Bitcoin mining and 

appended to a chain on previously accepted blocks called a block chain. For every newly 

created block, the miner is awarded with a mining reward which initially was 50 BTCs and 

has now halved to 25 BTCs. The transactions contained in this block thus get verified once 

the new block is accepted and by the Bitcoin network and is appended to the block chain. A 

block chain is the Bitcoin equivalent of a universal accounting ledger which ensures that no 

double-spending of Bitcoins can be performed. Among other things, the most important 

part of a block is its header which is very important in Bitcoin mining. Each block contains a 

reference to the previously created block in its header and so such a collection of blocks can 

be said to form a chain. A detailed description of the Bitcoin block header as well as the 
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process of Bitcoin mining has been explained in Chapter 5. Details of the Bitcoin block 

structure can be found in [9]. 

2.1.3 Proof-of-work and the Longest Chain 

Bitcoin mining and the creation of new blocks is essentially about trying to find the solution 

to the Bitcoin proof-of-work problem. Satoshi made use of this concept from a paper [2] 

that described a proof-of-work protocol to prevent Denial of Service attacks and email 

spam. A proof-of-work is actually a chunk of data which is computationally costly and time-

consuming to produce so as to satisfy certain requirements enforced by the Bitcoin 

protocol. It is trivial to verify the solution but it takes a lot of trial and error on average 

before a valid solution to a proof-of-work problem is generated. Proofs of work are used in 

Bitcoin for generation of new blocks i.e. in Bitcoin mining. A metric called as the difficulty 

(explained next) is self adjusting that limits the creation of new blocks to 10 minutes per 

new block. The longest block chain created represents the majority decision of the Bitcoin 

network and has the greatest proof-of-work effort invested in it. It is thus believed that this 

particular chain has been backed my most Bitcoin nodes and is therefore legitimate. Thus, if 

an attacker decides to tamper a previous transaction or a block (known as the history 

revision attack), he will have to repeat all the proof-of-work of that block and all those 

follow it and then exceed the legitimate block chain so as to make it accepted by the 

network. In order to do this, the attacker would need at least half of the current network 

hash rate which at the moment of writing is 524.81 TH/sec. It would thus be extremely 

costly with rather meagre returns for someone to attempt such an attack. In Bitcoin, the 

proof-of-work is implemented by incrementing a field called nonce in the block header until 

the block header’s hash value contains a certain number of preceding 0s. This requirement 

is determined by the current value of the target and difficulty which are explained next. 

2.1.4 Target 

Target is a 256 bit long integer that is broadcast and shared by the entire Bitcoin 

community. This value decides the difficulty of the finding a solution to the proof-of-work 

problem in Bitcoin. The primary requirement enforced by the Bitcoin protocol for a block to 

be accepted is that the hash if the block header must be less than or equal to the current 
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target6. Thus, as the target decreases, it becomes more difficult to mine Bitcoins i.e. 

generate a new block. The Bitcoin protocol relies on a feedback mechanism to dynamically 

adjust the target based on the speed in which the last 2016 blocks were mined. Each block is 

typically on average mined every 10 minutes and hence, 2016 blocks would typically take 

around 2 weeks. Thus, after about every 2 weeks, the target is adjusted that changes the 

difficulty of the proof-of-work problem. The actual time to create the current 2016 blocks is 

compared to the time taken to create the last 2016 blocks and the target is modified 

accordingly. If the new 2016 blocks were created rather quickly than the previous 2016 

blocks, this means that it is easier for the network to mine Bitcoins and so the target is 

reduced accordingly to increase the proof-of-work difficulty so as to restore the criteria of 1 

block getting created every 10 minutes. 

2.1.5 Difficulty 

This quantity is computed from the target and is a measure of how difficult it is to find a 

solution to the proof-of-work problem i.e. finding a new block compared to the easiest it 

ever was to find a new block. Similar to the target, the difficulty changes after every new 

2016 blocks. Difficulty is thus given by the following equation: 

Difficulty7 = Maximum Target/Current Target 

Equation 1: Calculation of Difficulty 

Adjusting the value of the Target and thereby the difficulty is the mechanism used by Bitcoin 

to maintain the rate of creation of new blocks i.e. creation of new Bitcoins to every 10 

minutes. The average time required (in seconds) to find a new block relative to one’s hash 

rate can be calculated as follows: 

                                                           
6
 Current Target - http://blockexplorer.com/q/hextarget 

7
 Current Difficulty - http://blockexplorer.com/q/getdifficulty 

Time = Difficulty*232/hash rate 

We shall assume that we own the recently announced BFL Monarch with a hash rate of 

600GH/s 

Average Time to find a new block = 65750060*232/600G = 438333 seconds å  5 days 

http://blockexplorer.com/q/hextarget
http://blockexplorer.com/q/getdifficulty
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2.2 The Bitcoin Protocol Specification 

2.2.1 Hashes 

Bitcoin mostly uses the double SHA256 hashing algorithm i.e. SHA256(SHA256(x)). Hence, 

when a hash is computed in the Bitcoin system, it is usually a double SHA256 hash. Another 

hash that has a shorter length message digest called RIPEMD160 is also used but in the 

creation of the Bitcoin addresses (explained ahead). 

2.2.2 Merkle Trees and Merkle Roots 

The transactions are indirectly hashed into the merkle root. Satoshi Nakamoto has explained 

this in his paper [42] and claims that the transactions spent before these transactions can be 

discarded to save disk space. To enable this, the transactions that are selected by the miners 

to include in their block are hashed in a Merkle Tree, and only the root, called the Merkle 

Root is included in the block’s header. Old blocks can then be compressed by chopping off 

branches of the Merkle Tree and the interior hashes need not be stored. The below image 

explains this well: 

 

Figure 1: Merkle Tree and Merkle Root 

Merkle trees are thus binary trees of hashes and they use double SHA256 hashing. Firstly, 

the bottom row of the tree is formed with the double SHA256 hashes of the transactions in 

the block. The row above it will now contain half that number of hashes as shown above in 

the image to the left. Two hashes from the row below are concatenated to form a 512 bit 

block and the double SHA256 hash of that is calculated. If a row has odd number of 
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elements, the final double hash is duplicated to ensure that each row has an even number 

of elements. This process is continued until the root of the tree is reached and a single 256 

bit value remains. This value is called the Merkle Root and is stored in the block header.  

Suppose that a miner has decided to include 3 transactions viz. t1, t2 and t3 in his new 

block. The Merkle Tree and the Merkle Root is calculated as follows: 

H1 = DHash(t1) … // DHash(t1) = SHA256(SHA256(t1)) 

H2 = DHash(t3) 

H3 = DHash(t3) 

H4 = DHash(t3) … // Hash was duplicated as transactions were odd in number 

H5 = DHash(H1 || H2) 

H6 = DHash(H3 || H4) 

H7 = DHash(H5 || H6) 

Thus, H7 is the Merkle Root of these 3 transactions in this block. 

Equation 2: Merkle Tree and Merkle Root Calculation Example. Source: [9] 

2.2.3 Signatures 

Bitcoin uses the Elliptic Curve Digital Signature Algorithm (ECDSA) [1] [31] to sign the 

transactions. New ECDSA public and private keys are generated for every Bitcoin address 

and the correlation is done internally by the Bitcoin client software. 

2.2.4 Bitcoin Addresses 

A Bitcoin address is analogous to an email address and Bitcoins can be sent to a person by 

sending them to one of their Bitcoin addresses. A person can have as many addresses as 

desired and it is in fact recommended that for additional privacy, it is best to use a unique 

address for each transaction. Websites that accept Bitcoin as donation often have a 

mechanism to generate a new Bitcoin addresses as required8.   A Bitcoin address is a case-

sensitive identifier that can be 27-34 alphanumeric characters long and begin with either 

the number 1 or 3. An example of a Bitcoin address is 1HB5XMLmzFVj8ALj6mfBsbifRoD4mi 

Y36v. A Bitcoin address is actually the hash of an ECDSA public key and on a high level, is 

computed [9] as follows: 
                                                           
8
 See Wikileaks donation page - http://shop.wikileaks.org/donate#dbitcoin 

http://shop.wikileaks.org/donate#dbitcoin
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Version = 1 byte of 0s 

Keyhash = Version || RIPEMD160(SHA256(ECDSA_pubkey)) 

Checksum = 1st 4 bytes(SHA256(SHA256(Keyhash)) 

Bitcoin Address = Base58Encode(Keyhash || Checksum) 

Equation 3: Calculation of a Bitcoin Address 

2.3 Bitcoin Mining 

Bitcoin mining essentially involves computing the double SHA256 hash of the Bitcoin block 

header such that the hash is less than or equal to the target and is preceded by certain 

number of zeroes. The number of 0s that need to precede the hash value is determined by 

the current value of target/difficulty and is explained in detail in section 5.2.6. The current 

section is concerned with what the miner is rewarded once he has created a new block 

which is accepted into the block chain by the Bitcoin network. 

2.3.1 Mining Reward and Transaction Fees 

When a miner is able to discover a new block that is accepted by the Bitcoin network, the 

miner receives a mining reward in the form of Bitcoins which are an incentive to the miner 

for the invested time and computational power. It is the generation transaction or a 

coinbase transaction contained in the block that grants these Bitcoins to the miners. The 

transaction fees of the transactions contained in that block are also credited via this 

generation/coinbase transaction. At the time of writing, for every new block, the miner is 

awarded with 25 BTCs. Earlier until 28th November 2012, the miners were rewarded with 50 

BTCs per mined blocked. Roughly by the end of 2016, the reward will get halved again so 

that each newly found block will have a mining reward of 12.5 BTCs. This is because the 

Bitcoin protocol relies on the fact that for anything to have value, its supply must be limited. 

Hence, the Bitcoin protocol is designed such that the number of Bitcoins awarded per block 

halves after every 210000 blocks. We know that the target/difficulty self adjusts such that a 

new block can be found in about 10 minutes. This means that the mining rewards will halve 

after about every 4 years. The result of this is that Bitcoin has a limited and strictly fixed 

supply of about 21 million BTCs. The level of 21 million BTCs is expected to be reached 

sometime in the year 2140 but the practical number of 99% of the total Bitcoins mined will 

be attained sometime in the year 2032. The total number of Bitcoins currently mined and in 
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circulation are about 11.63 million BTCs [4]. One may speculate that this 21m cap isn’t 

enough and Bitcoin isn’t scalable. But it is believed that due to the limited supply, Bitcoin 

will deflate i.e. rise in value. Bitcoins are divisible up to eight decimal places and the smallest 

unit in Bitcoin is called a Satoshi and 1 Satoshi = 0.00000001 BTC. There are thus almost 2 

quadrillion maximum possible atomic units in the Bitcoin protocol. When appropriate high 

levels of value are reached, people in the future can be seen dealing with smaller units like 

mBTC, µBTC and nBTC. 

2.3.2 Improvement Proposal for the Mining Reward 

The built-in mechanism of the mining reward halving is sort of a problem for miners. Notice 

how it forms a geometric decrement as it gets halved after every 210000 blocks. What this 

implies is that one day the mining reward suddenly becomes half of what it was before. This 

also means that suddenly, it becomes twice as costly to mine Bitcoins [19]. This hampers the 

income stability which is of utmost important to businesses. We thus propose to smooth the 

Bitcoin rewarding mechanism by introducing a linear decrement instead of the default 

geometric decrement. We propose that the block reward should be decremented after the 

creation of each block and not after 210000 blocks and we take advantage of the fact that 1 

BTC is divisible up to 8 decimal places. The next reward halving is at 420000 blocks and next 

to next halving is at 630000 blocks. We propose that the following decrement should be 

introduced after block 420000:  

12.5 BTC Ą6.25 BTC and 420000 Ą630000 

Therefore, Reward = Reward - 6.25/(630000-420000) = Reward - 0.00002976 

Thus, the number of Bitcoins awarded when block 420001 is mined will be 12.5 - 

0.00002976 = 12.49997024 and so on 

Equation 4: Calculation of the New Mining Reward 
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Chapter 3: The SHA256 Hashing Algorithm 

3.1 An Overview of SHA256 

A detailed description of the SHA256 hashing algorithm can be found in the official NIST 

standard [26]. This section provides an overview of the SHA256 algorithm that forms the 

backbone of the Bitcoin ecosystem. The integrity of Bitcoin transactions depends upon the 

collision resistance and pre-image resistance of the SHA256 hashing algorithm. It is 

important to remember the fact that in the Bitcoin protocol, the SHA256 hash is computed 

twice. 

 

Figure 2: An Overview of the SHA256 Hashing Algorithm. 

The SHA256 algorithm takes an input that has a length of less than 264 bits. It has a block 

size of 512 bits which are represented as a sequence of sixteen 32-bit words. This 512 bit 

block enters a function called the message compression function in words of 32 bits (Wt) 

through a message scheduler. Both of these are explained in detail later on. The message 

scheduler expands the 512 bit message block into sixty-four 32-bit words. The operations 

inside the SHA256 hashing algorithm are performed on words that are 32-bit in length using 

eight working variables names as A, B, C, D, E, F, G and H that are also 32-bits in length. 

Hence, the word length of the SHA256 algorithm is of 32 bits. The values for these working 

variables are computed at every round and this process continues till 64 rounds have been 
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completed. Very importantly, it should be noted that all additions in the SHA256 hashing 

algorithm are performed modulo 232. Hence, the reader should interpret all additions 

mentioned henceforth in this text as additions performed modulo 232.  

SHA256 also takes a 256 bit initialisation vector (IV) which is fixed for the first message 

block. An intermediate message digest obtained at the end of the first 64 rounds which 

serves as the IV for the next message block. The SHA256 hash function is built using the 

Davies-Meyer construction where the IV is added to the output at the end of 64 rounds. 

Thus, after 64 rounds of the message compression function and addition of the IV, the 

algorithm produces an intermediate message digest of 256 bits. After the entire message 

blocks have been hashed, a value on 256 bits is obtained that is the final message digest of 

the input message. The SHA256 hashing algorithm is thus comparable to a block cipher with 

a 256 bit message block size (IV) and a 512 bit key (message block) that is expanded into 

sixty-four 32 bit round keys using the message scheduler for each of the 64 rounds of this 

cipher. The Bitcoin protocol takes advantage of the avalanche property of the SHA256 

algorithm that makes it very hard for attackers to find shortcuts in finding a new block that 

starts with the stipulated number of 0s. The next section will take a deep-dive into the 

insides of the SHA256 algorithm.  

3.2 SHA256 Deep-Dive 

The SHA256 hashing algorithm operation can be conveniently divided into three distinct 

operations. They are as follows: 

¶ Pre-processing: Operation that performs padding logic and parses the input message 

¶ Message scheduler: Function that generates sixty-four words from an 16 word input 

message block 

¶ Compression function: Function that carries out the actual hashing operation of the 

message-dependent word that comes out of the message scheduler in each round 



14 Chapter 3: The SHA256 Hashing Algorithm 

 

3.2.1 SHA256 Pre-processing 

The SHA256 pre-processing is the initial step that needs to be performed before the 

message scheduling and the compression function can be applied. The pre-processing stage 

performs the following three tasks in order: 

¶ Pad the message to make it a multiple of 512 bits, 

¶ Parse this message into 512 bit blocks, and 

¶ Set the initial hash value 

3.2.1.1 Padding the Message 

The message to be hashed needs to be padded first. Padding is done so as to ensure that 

the message to be hashed is a multiple of the block size for SHA256 i.e. 512 bits. Now, if we 

consider that the length of the message is l bits, the padding logic is such that it appends a 

bit “1” at the end of the actual message which is then followed by k number of zero bits. 

Here, k is the smallest, non negative solution to the following equation [26]: 

l + 1 + k = 448 mod 512 

Equation 5: SHA256 Padding Logic 

The equation above is such because SHA256 allows an input message to have a length of up 

to 264 bits. After the trail of 0 bits, a 64 bit block is appended at the end that is equal to l 

represented in a binary representation. 

3.2.1.2 Parsing the Padded Message 

After the message has been padded using the logic explained above, it is parsed into N 512-

bit blocks so that the message scheduling and hash computation can be commenced. 

3.2.1.3 Setting the Initial Hash Value (H0) 

Before the hash computation commences, the initial hash value is set which consists of the 

following 32 bit words: 

H
0

0
  H

1

0
  H

2

0
  H

3

0
  H

4

0
  H

5

0
  H

6

0
  H

7

0
  

0x6a09e667 0xbb67ae85 0x3c6ef372 0xa54ff53a 0x510e527f 0x9b05688c 0x1f83d9ab 0x5be0cd19 

Table 1: SHA256 Initialisation Vector. Source: [26] 
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It is interesting to know the origin of this 8 word value. They were obtained by taking the 

first 32 bits of the fractional parts of the square roots of the first 8 prime numbers. This 

initial hash value acts as the IV for the SHA256 algorithm as explained in the earlier section. 

3.2.2 SHA256 Message Scheduler 

After the pre-processing stage is completed, the message schedule block takes the first 512 

bit message block and outputs the message dependant words Wt. The 32 bit message-

dependant words that that are output by the message scheduler for every round are 

labelled as W0, W1,…, W63 (for t=0 to 63) and they are calculated as follows: 

For 0 ≤ t ≤ 15, 

Wt = Mt 

For 16 ≤ t ≤ 63, 

Wt = 1(Wt-2) + Wt-7 + 0(Wt-5) + Wt-16 

Equation 6: SHA256 Message Scheduler. Source: [26] 

Here, σ 0 and σ 1 are two logical functions specific to the SHA256 message scheduler that 

operate on a 32 bit word. The details of these functions are provided below: 

0(x) = ROTR7(x) ṥ ROTR18(x) ṥ SHR3(x) 

1(x) = ROTR17(x) ṥ ROTR19(x) ṥ SHR10(x) 

Equation 7: Logical Functions 0 and 1. Source: [26] 

The two logical functions 0 and 1 operate on a word of the input message and apply the 

above bitwise operations to it. ROTRx stands for bitwise rotate right for x bits, SHRx stands 

for bitwise shift right and ṥ stands for the bitwise exclusive or. This message schedule block 

is usually implemented in hardware by using 16 stages of 32 bit shift registers and three 32 

bit adders [33] for the 512 bit data block processing.  

The visual representation of the message scheduler has been shown in figure 3. The 

multiplexer is controlled by logic to allow either Mt or the computed Wt to pass depending 

on the value of t. Every round, the 32 bit value of Wt is shifted to the left using the shift 

registers as previous values of Wt are required to calculate future values of Wt. It is 

appealing to know that two logical functions 0, 1 and the message schedule logic 
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explained don’t come into play until the 17th round. The 512 bit input message is fed as it is 

to the message compression function for the first 16 rounds. 

3.2.3 SHA256 Message Compression Function 

The message compression function performs the actual hashing operation and is the main 

operation that enforces the one-way property of SHA256. Other than the eight words of 

working variables A, B, C, D, E, F, G and H that are used and updated in each round, two 

temporary words T1 and T2 are also used by the message compression function for 

computation of the variables A and E in each round. The first step that the message 

compression function performs is that it initialises these 8 working variables with the IV (if it 

is the first block) or with the intermediate hash of the previous block (if it is not the first 

block being hashed).  

 

Figure 3: SHA256 Message Compression Function (Above) and Message Scheduler (Below) 

The figure above shows the typical implementation of the message compression function as 

well as the message scheduler that operate in tandem. It can be clearly seen from the figure 

above that at every round, 6 out of 8 values of A, B, C, and E, F, G are shifted by one position 

to B, C, D and F, G, H respectively. Wt is the 32 bit data calculated by the message scheduler 

and fed to the compression function and Kt is a round specific 32 bit constant whose round 
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specific values are specified in appendix A. SHA256 uses 64 constants (1 for each round) that 

are 32 bit words and they have been obtained by taking the first 32 bits of the fractional 

parts of the cube roots of the first 64 prime numbers. Variables A and E are dependent on 

all input values and are computed in each round using equations explained next. After the 8 

working variables are initialised as explained earlier, 64 rounds of the compression function 

are applied to them and intermediate round values of these variables are calculated as 

follows: 

T1 = H + Ɇ1(E) + Ch(E, F, G) + Kt + Wt 

T2 = Ɇ0
(A) + Maj(A, B, C) 

H = G; G = F; F = E 

E = D + T1 = D + H + Ɇ1(E) + Ch(E, F, G) + Kt + Wt 

D = C; C = B; B = A 

A = T1 + T2 = H + Ɇ1(E) + Ch(E, F, G) + Ɇ0
(A) + Maj(A, B, C) + Kt + Wt 

Equation 8: Message Compression Function. Source: [26] 

The four logical functions mentioned above perform the core operation of introducing the 

confusion and diffusion in Wt that enters in 32 bit words at each round. After applying the 

above equations to the working variables for 64 rounds, an appropriate level of the 

avalanche effect is observed. These 4 logical functions are now explained next. 

Ch(X, Y, Z) = (X  ᷈Y)ṥ(¬X  ᷈Z) 

Maj(X, Y, Z)= (X  ᷈Y)ṥ(X  ᷈Z)ṥ(Y  ᷈Z) 

Ɇ0(X) = ROTR2(X) ṥ ROTR13(X) ṥ ROTR22(X) 

Ɇ1(X) = ROTR6(X) ṥ ROTR11(X) ṥ ROTR25(X) 

Equation 9: Logical Functions Ch, Maj, Ɇ0 and Ɇ1. Source: [26] 

Here, logical functions Ch and Maj take 3 words as input and produce a single word output. 

᷈ stands for a 32 bit Bitwise AND operation while ¬ is the compliment operation. The Ch 

function always takes the working variables E, F and G as inputs while the Maj function 

always takes A, B and C as inputs. Variables A and E are the ones that need to be computed 

at each round. Functions Ɇ0 and Ɇ1 always take variables A and E as their input. We can 
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thus see some sort of symmetry in the message compression function that divides it into 

two parts. This symmetry is evident from figure 3. 

 

Figure 4: SHA256 Compression Function Along with the Final Additions. 

The figure above represents a different look at the compression function but it conveys the 

same message. The point to take away from this figure is that after the compression 

function has been applied 64 times i.e. after the 64 rounds have been completed, the values 

contained in the working variables A to H are finally added to the 8 word data block that 

was fed to the compression function at the beginning. This value could either be the 

constant IV for SHA256 or an intermediate message digest. This is because of the fact that 

the SHA256 algorithm follows the Davies-Meyer construction where the input is added to 

the output at the end. Now, the intermediate/final hash is given by the following equation: 
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H
0

i+1
 = A + H0
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H
1

i+1
 = B + H1

i 

H
2

i+1
 = C + H2

i 

H
3

i+1
 = D + H3

i 

H
4

i+1
 = E + H4

i 

H
5

i+1
 = F + H5

i 

H
6

i+1
 = G + H6

i 

H
7

i+1 = H + H7
i 

Equation 10: Calculation of Intermediate/Final Hash Value 

After all the message blocks including the final Nth message block has been processed in this 

manner, the final hash i.e. the 256 bit message digest of the message is represented in the 

following manner: 

SHA256(M) = H0
N

 || H1
N

 || H2
N

 || H3
N

 || H4
N

 || H5
N

 || H6
N

 || H7
N

  

Equation 11: Resulting SHA256 Message Digest. Source: [26] 

This 8 word data block (H0
i - H7

i) is the default constant SHA256 initialisation vector (IV) if 

the message was less than or equal to 512 bits (including the padding). If the length of the 

message (including padding) is greater than 512 bits, then this 8 word data block is the 

intermediate hash calculated of the previous 512 bit block. This arrangement where the 

intermediate hash value of the previous block is fed as IV to the hash computation of the 

next block is called the Merkle-Damgård construction. SHA256 is based on this construction 

called the Merkle-Damgård Paradigm and is built to be collision resistant as the underlying 

SHA256 compression function is collision resistant. 
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3.3 Analysis of the Operations Involved in SHA256 

Below is an analysis of the number of different operations performed by the SHA256 

algorithm on a 512 bit message block over 64 rounds. This analysis is imperative for the 

quantitative analysis done in the discussion part of this text that calculates the number of 

operations being saved due to the suggested optimisations. The table below summarises all 

the operations that take place in 64 rounds of the message compression function and the 

message scheduler as well as the 8 word addition that takes place at the end. 

Additions (Mod 232) 
= (7*64) + (3*48) + 8 
= 448 + 144 + 8 
= 600 

(message compression) + 
(message scheduler) + 
(intermediate/final hash 
computation) 

Bitwise Rotations (ROTR) 
= (6*64) + (4*48) 
= 384 + 192 
= 576 

(Ɇ0,Ɇ1) + ( 0, 1) 

Bitwise Shifts (SHR) 
= 2*48 
= 96 0, 1 

Bitwise AND ( )᷈ 
= 5*64 
= 320 

Maj, Ch 

Bitwise EX-OR (ṥ) 
= (7*64) + (4*48) 
= 448 + 192 
= 640 

(message compression) + 
(message scheduler) 

Total Operations 
= 600 + 576 + 96 + 320 + 640 
= 2232 

 

Table 2: Number of Operations in SHA256 

The bitwise rotations and the bitwise shift operations involve just re-arranging the input 

word. It is said [33] that in the SHA256 architecture, the Mod 232 additions are the most 

important and critical part that require many logic gates to implement. The additions 

involving 7 operands in the calculation of working variable A also forms the longest data 

path or the critical path. Hence, if we are able to cut down the number of additions being 

performed in the compression function even by a small amount, this will optimise the 

process to a great extent. 
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Chapter 4: Related Work - The Hardware 

Implementations and Optimisations of 

SHA256 
The only practical way of a high speed SHA256 engine is to implement it in hardware be it 

either FPFAs or the recent technology of ASICs. Software implementations of Bitcoin mining 

used in CPU or GPU mining have become obsolete as they simply cannot compete with the 

hashing power of hardware implementations. These hardware implementations truly serve 

the meaning of a fast implementation and various hardware optimisations have been 

proposed over the years in order to increase their throughput and to reduce their power 

consumption. These optimisations, however, are aimed at the hardware implementation of 

the SHA256 hashing algorithm in general rather than SHA256 employed for Bitcoin mining. 

Most of these optimisations are aimed towards the longest data path or the critical path in 

the SHA256 core which is the calculation of working variable A in the message compression 

function that involves mod 232 additions of 7 operands (see equation 8 in section 3.2.3). We 

shall now have a look at the various SHA256 hardware speedup proposals made. 

4.1 SHA256 Hardware Optimisations 

Many hardware implementations have been seen in the literature that are either FPGA [15] 

[16] [25] [30] [39] or ASIC designs [21] [22] [33] [37] [47]. These implementations designs 

contain one or a combination of the following optimisations so as to speed up the 

calculations i.e. the throughput of the SHA256 core. The main design difference for the 

hardware implementation of SHA256 lies in the trade-off between throughput and the area 

complexity which is measured in Gate Equivalents (GE). But, in our cases of Bitcoin mining, 

we typically have no area/space constrains and thus we shall concentrate on the throughput 

optimisations only. More the area, more is the throughput and lesser is the number of 

required clock cycles to perform the SHA256 computation. 

4.1.1 Use of Carry-Save Adders (CSAs) 

As mentioned before, the calculation of the working variable A for each round of the 

compression function forms the longest data path or the critical path in the SHA256 core. 
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This involves mod 232 additions on 7 operands (Kt, Wt, H, Ɇ1(E), Ch(E, F, G), Ɇ0
(A), Maj(A, B, 

C)). Architectures [21] [22] [35] [36] [39] employing Carry Save Adders (CSAs) minimise the 

delay caused by the carry propagation time by separating the sum and the carry paths. CSAs 

accept 3 operands as inputs and so, the working variable A can be computed using just 5 

CSAs [22]. Having said that, CSAs require another 2-input adder for the recombination of the 

sum and carry paths. This 2 operand addition can either be performed by using CLAs i.e. 

Carry Look Ahead adders or by using CPAs i.e. Carry Propagation Adders. The net result of 

using CSAs for the critical path is that they reduce the carry propagation delay caused as 

compared to traditional CPAs used on the critical path. 

4.1.2 Unrolling 

Unrolled architectures [20] [35] [36] [39] reduce the number of clock cycles required to 

perform the SHA256 hash computation by implementing multiple rounds of the SHA256 

compression function using combinational logic. These architectures help improve the 

throughput by optimising the data dependencies involved in the message compression 

function. Say if the SHA256 core was unrolled once, then this would effectively mean that 

the hash should be calculated in half the number of clock cycles. As a trade-off, unrolling the 

SHA256 core architecture comes at the cost of a decrease in the clock frequency and an 

increase in the area complexity. 

4.1.3 (Quasi-) Pipelining 

The goal of quasi-pipelining is to optimise the critical path and therefore increase the clock 

frequency. Quasi-pipelined SHA256 architectures [21] [22] [36] [39] use registers to break 

the long path or the critical path of the computation of the working variable A in the 

message compression function. Thus, such quasi-pipelines architectures allow higher data 

throughputs and higher frequencies of hash calculations by achieving very short critical 

paths. Pipelining is not as easy to achieve as it sounds due to the feedback associated due to 

the way in which the SHA256 compression function is designed. As a result, an external 

control circuitry is required such that the registers are enabled correctly. 
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4.1.4 Delay Balancing 

Dadda et al. [22] have been the pioneers in hardware optimisations of SHA256 and they 

have also spent their research efforts on delay balancing along with the use of CSAs. Just as 

described earlier, a CLA is used to combine the sum and the carry paths output by the CSA 

but these sum and carry paths are first registered so that the CLA adder is removed from the 

critical path. This increases the throughput but this architecture requires additional control 

circuitry for the additional register introduced in the architecture. 

4.1.5 Addition of Kt and Wt 

Looking at figure 3 and figure 4, we can see that the addition of Kt and Wt can be performed 

independent of the message compression function. The architecture proposed in [52] uses 

this as an improvement by moving Kt + Wt to the message scheduler stage. This can be done 

because both Wt and Kt are available before and are independent of the other operands 

(see equation 8 in section 3.2.3). However, it is seen that quasi-pipelining architecture 

proposed by Dadda et. al. [21] [22] [36] performs a similar separation of the operands and 

the resulting critical path is even shorter than in [52].  

4.1.6 Operation Rescheduling 

Architectures that employ operational rescheduling allow an efficient use of a pipelined 

structure without increasing the area complexity.  This in turn allows higher throughputs. 

[15] [16] have claimed that they were able to reduce the critical path in a similar manner as 

unrolling techniques and gain a higher throughput without adding more area complexity.  
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Chapter 5: The Bitcoin Block Header Hashing 

Algorithm 

The analyses and the details presented in the coming section have been collectively 

obtained from information provided in [9] [19] [42]. Important findings and understandings 

were also made by studying the open source Bitcoin mining program written in C called 

cgminer. The source code is available here [34]. 

5.1 An Overview of the Bitcoin Block Header Hashing 

Algorithm 
Mining devices use the Bitcoin Block Header Hashing Algorithm to find new blocks and 

thereby mine new Bitcoins. Looking from a purely technical perspective, the process of 

Bitcoin mining basically involves mining devices continuously calculating the double SHA256 

hash of the Bitcoin block header and waiting for an output that would be accepted by the 

Bitcoin network. This section will emphasise on what constitutes this Bitcoin block header 

and how it is constructed. The construction of the Bitcoin block header will throw a light on 

how the data to be hashed actually enters the SHA256 hashing algorithm. It will also explain 

what part of this data typically remains constant throughout the mining process, what data 

changes but rather infrequently and what part of the data changes quite frequently. 

Following the footsteps of [19], the Bitcoin block header hashing algorithm is explained 

using a colour coded approach. Three colours viz. Green, Yellow and Red are used in order 

to explain the rate at which these values fluctuate relative to the process of Bitcoin mining. 

The green colour specifies that the value will either remain constant forever or for 

significantly long period of time. The yellow colour indicates that the value will change but 

rather quite infrequently i.e. relatively after some amount of time. The red colour indicates 

that this data value will change the fastest i.e. typically for every hash calculation. It needs 

to be pointed out that the colour coding and the data change frequencies mentioned are 

relative to the hashing speed of current hashing devices that are huge. The next figure 

shows the structure of the Bitcoin block header and how it is fed to the double SHA256 

hashing algorithm in order to obtain a hash value that gets accepted by the Bitcoin network. 
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Figure 5: The Bitcoin Block Header Hashing Algorithm 

From the figure, it is evident that the process of Bitcoin mining i.e. hashing this Bitcoin block 

header employs three applications of the SHA256 hashing algorithm. We shall name them 

SHA2560, SHA2561 and SHA2562. These notations will henceforth be used throughout this 

text for addressing that particular application of the SHA256 hashing algorithm. The block 

header being greater than 512 bits in length, it is processed by two applications (SHA2560, 

SHA2561) of SHA256 (one 512 bit block at a time). SHA2560 takes the first 512 bit block as 

input and after 64 rounds, produces the intermediate message digest H0. SHA2560 takes the 

default IV on 256 bits that is described in [26] as well as in section 3.2. The default IV that 

SHA2560 uses will be constant forever and hence it has been marked with the green colour. 

As the calculated intermediate message digest H0 depends on inputs marked with the 

yellow colour, H0 is also marked as yellow. 

SHA2561 uses H0 as its initialisation vector and takes the next 512 bits as its input block. The 

red coloured nonce is present in the input and hence, the final message digest, H1 produced 

by SHA2561 is also marked as red. The process of hashing the block header does not stop 
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here. The final message digest H1 produced by SHA2561 is applied through another SHA256 

hashing which we name as SHA2562. SHA2562 takes the 256 bit block of H1 as its input 

message block and applies suitable padding (as explained in section 3.2.1.1) to make it a 

block of 512 bits. SHA2562 being an additional application of SHA256 applied again, uses the 

same default IV as used by SHA2560 which is marked as green. After 64 rounds of the 

compression function of SHA2562, the final hash H2 is generated which for obvious reasons 

is marked as red in the earlier figure. H2 is then checked to see if it satisfies the current 

constraints of the Bitcoin protocol. If H2 does satisfy these constraints, the successful block 

with the correct nonce is broadcast immediately in the Bitcoin network for acceptance and 

to claim the mining reward. The Bitcoin mining process thus basically involves the below 

calculation repeated potentially billions of times with variable nonces: 

H2 = SHA256(SHA256(Block_Header)) 

Equation 12: Bitcoin Mining - Hashing the Block Header 

The reader may question as to why an additional application of SHA256 is made at the end. 

One explanation [7] why Satoshi Nakamoto chose to have double SHA256 hashing is to 

prevent length extension attacks. The SHA256 hashing algorithm, like all hashes constructed 

using the Merkle-Damgård paradigm, is vulnerable to this attack. The length extension 

attack allows an attacker who knows SHA256(x) to calculate SHA256(x||y) without the 

knowledge of x. Although it is unclear how length extension attacks may make the Bitcoin 

protocol susceptible to harm, it is believed that Satoshi Nakamoto decided to play it safe 

and include the double hashing in his design. Another explanation [6] for this double 

hashing is that 128 rounds of SHA256 may remain safe longer if in the far future, a practical 

pre-image or a partial pre-image attack was found against SHA256.  

Regardless of the reason behind it, what is important to know and to understand is that 

whenever a SHA256 hash is calculated in Bitcoin, it is a double SHA256 hash. Thus, a double 

hash of the block header is calculated and is then checked if the value of the hash conforms 

to the Bitcoin protocol proof-of-work constraints. The next section covers the details of the 

Bitcoin block header by explaining what each data block contains and the frequency by 

which these data change. 
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5.2 Details of the Bitcoin Block Header 
The block header may also occasionally need to be updated while working on it during 

mining. It is important to know that it is the body of the block that contains the actual 

transactions and NOT the block header. All the transactions contained in the block are only 

hashed indirectly into the block header via the Merkle root (section 2.2.2). This ingenious 

method not only ensures the transaction integrity but another offshoot of this arrangement 

is that the time taken to hash the block header becomes independent of the number of 

transactions that it contains. The block header as described in the earlier figure and in [9] 

essentially contains the following fields (continuing the same colour coding scheme): 

Field Size Description 

Version 32 bits 
Block version information that is based on the Bitcoin 
software version creating this block 

hashPrevBlock 256 bits 
The hash of the previous block accepted by the Bitcoin 
network 

hashMerkleRoot 256 bits 
Bitcoin transactions are hashed indirectly through the 
Merkle Root 

Timestamp 32 bits 
The current timestamp in seconds since 1970-01-01 T00:00 
UTC 

Target 32 bits The current Target represented in a 32 bit compact format 

Nonce 32 bits 
Goes from 0x00000000 to 0xFFFFFFFF and is incremented 
after a hash has been tried 

Padding + Length 384 bits 
Standard SHA256 padding that is appended to the data 
above 

Table 3: Bitcoin Block Header Fields Along With Their Brief Description 

5.2.1 Version 

This 32-bit value is an integer that represents the version of the rules that the Bitcoin 

software follows to create a new block. The current value is 2 and has changed ever since 

BIP00349 was accepted in July 2012. Before that, the value was 1. The point to take here is 

that this value can be considered as constant and is hence marked as green in the table 

above as well as in figure 5. The announcement that Version 1 blocks will soon be orphaned 

was made by Gavin Andresen, the lead core Bitcoin developer in his post [5] on Bitcointalk. 
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The BIP that has been accepted has implemented the rule that if 950 of the last 1,000 blocks 

are version 2 or greater, then reject all version 1 blocks in the community. [19] mentions 

that currently more than 90% of new blocks created are of version 2 and that the Bitcoin 

community will soon stop accepting blocks with version as 1. 

5.2.2 hashPrevBlock 

This is the 256 bit H2 of the previous block that was accepted by the Bitcoin network. By 

including this value in the new block header, the miner basically tries to further extend the 

longest proof-of-work chain as explained in section 2.1.3. It is important to know that the 

miner has to find a new block after the latest accepted block and he tries to be the first to 

solve the proof of work problem. The solution to the proof-of-work problem however, is 

NOT unique and is actually a race between different miners to be the first to solve and 

broadcast the new H2 that will be accepted by the network. If accepted, the miner will 

hence be awarded with the current mining reward of 25 BTC along with the transaction fees 

that were included in the individual transactions held by the block. As the Bitcoin protocol is 

designed such that a new block is generated by the network in approximately every 10 

minutes, it is safe to assume that on average, hashPrevBlock needs to be updated after 

around every 10 minutes. For this reason, we have marked it with the yellow colour. 

5.2.3 hashMerkleRoot 

hashMerkleRoot is the 256 bit value of the Merkle Root as explained in section 2.2.2. Similar 

to hashPrevBlock, hashMerkleRoot will typically on average change in around 10 minutes 

time and hence even this is marked in yellow. There is another scenario where 

hashMerkleRoot changes and this will be explained ahead in section 5.2.6. 

5.2.4 Timestamp 

This 32 bit value is the current time in seconds since 1970-01-01 T00:00 UTC. The miner may 

have some flexibility of varying it to his advantage but this is very risky as there are only 600 

seconds in that 10 minute window and every microsecond counts. Considering the hashing 

rate of current miners, 1 second is relatively a large timeslot and we have thus marked the 

timestamp field as yellow; indicating that it changes but relatively rarely. 
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5.2.5 Target 

This is the same Target as explained earlier in section 2.1.4. The only difference is that this 

value is a compact version for it and is expressed in 32 bits rather than 256 bits. This is a 

particular sort of floating-point encoding that uses 3 bytes mantissa, the leading byte as 

exponent (where only the 5 lowest bits are used) and the base is 256 [9]. The target changes 

after every 2016 new blocks which takes about 2 weeks time. As the target changes in about 

two weeks’ time, we have marked it as green. 

5.2.6 Nonce 

This 32 bit value is the only value in the block header that is the most volatile as it changes 

on every attempt of the double hash on the block header. We have thus marked the nonce 

field in red. The nonce starts at 0 and it is incremented strictly in a linear manner for each 

H2 attempted. One interesting question that needs to be brought up is that if one knows 

the current target, what would be the probability of finding H2 that will be accepted by the 

Bitcoin network? This probability [10] [19] is given by: 

Probability = Target/2256 = 1/(Difficulty*232) 

With the current Difficulty10 at the time of writing being 65750060, 

Probability = 1/(65750060*232) = 2-57.97
 

Hence, the average number of hashes that need to be tried to solve a block 

= 1/Probability = 257.97
 

That been said, we know that there are only 232 possible values for the nonce! This means 

that the nonce is probably going to overflow more often than not. If this happens, there is a 

provision in the Bitcoin protocol such that whenever the nonce overflows, the “extraNonce” 

portion of the generation transaction in the block is incremented which ultimately changes 

the Merkle Root. Once this updated Merkle Root is added to the block header, calculation 

commences again with nonce at 0 until an acceptable H2 is found. Else, this process is 

repeated. This is the second scenario in which hashMerkleRoot might change while a miner 

is solving for a new block. This value of 57.97 also means that H2 will need to start with 58 
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or more 0s and also be less than the target so as to be accepted in the block chain by the 

Bitcoin network. 

5.2.7 Padding + Length 

For SHA2561, padding + length are 384 bits long while for SHA2562, it is 256 bits long. As the 

specification of SHA256 is known and the length of the input message to SHA2561 and 

SHA2562 is fixed i.e. 640 bits and 256 bits respectively; the padding + length field will always 

remain constant. We have hence marked these in green.  

After comprehending all of this, the reader may argue that given all these fields, the same 

sequence of hashes will be generated by all miners and the miner with the most mining 

capability will always be able to solve the block first. This is in fact not true as it is almost 

impossible for two miners to end up with the same hashMerkleRoot. This is because each 

block has a unique transaction called the “Generation Transaction” or the “Coinbase 

Transaction”.  This transaction grants the mining reward and the transaction fees to the 

miner once the block is accepted by the network. As this generation transaction is unique, 

hashMerkleRoot is generally unique for all miners and every hash calculated by a miner has 

the same chance of solving the block as every other hash calculated in the entire Bitcoin 

network. Therefore, it can be said that the process of Bitcoin mining is analogous to a lottery 

draw where each participant has an equal chance of winning. But as people tend to buy 

more and more lottery tickets in order to have a better chance at winning the lottery, same 

is evident in the Bitcoin world where there is an arms race between miners to obtain mining 

devices with the fastest hashing rate. This is because a mining device with a faster hashing 

rate can make more attempts at solving the block in a given time. Winning the Bitcoin 

lottery is getting harder every two weeks as the network hash rate is constantly on the rise 

which is driving the Difficulty up as well. But as rightfully claimed in [19], Bitcoin miners are 

now clever enough to participate in mining clusters or mining pools that helps to smooth 

their gains in mining and remove the lottery aspect from their earnings. Each miner is then 

paid out on the basis of the hashing rate contributed to the cluster/pool. 
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Chapter 6: SHA256 Algorithm Optimisations 

6.1 Optimisation#1: The Calculation of H0 for SHA2560 

 

Figure 6: Input Message Block to SHA2560 

As evident from figure 5 and according to the Block header hashing algorithm, the hash 

value generated after the first application of the hash function (SHA2560) is H0. Looking at 

an excerpt of figure 4 above, it is evident that H0 depends upon 32 bits of Version, 256 bits 

of hashPrevBlock and 224 bits of hashMerkleRoot. Version is marked as green and will 

remain constant throughout. So, hashPrevBlock and hashMerkleRoot are the only two 

variables involved. Thus, as rightfully pointed out in [19] and by independent observation, 

H0 needs to be calculated only once during the mining computation. Calculation of H0 

therefore costs nothing and can be amortized over many computations with various nonces. 

The 256 bits of hashPrevBlock will remain constant until someone else finds a new block. If a 

new block is found, the existing mining needs to be terminated. hashPrevBlock and 

hashMerkleRoot will obviously change and H0 will have to be calculated again. It is the 

responsibility of the miner to constantly check if a new block was found in the Bitcoin 

network. If the new block is yet to be found, hashMerkleRoot will change only when the 

nonce overflows (see section 5.2.6). 

This optimisation is understandably trivial and it is believed that this optimisation logic 

should have already been implemented in most mining devices. 
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6.2 Optimisation#2: Early Rejection at Rounds 61 and 

62 for SHA2562 

 

Figure 7: SHA2562 

[19] also presents the idea of an early rejection technique where during the application of 

SHA2562 for the calculation of H2, due to the nature of the SHA256 algorithm, the necessary 

values to be checked if H2 < target can be obtained at rounds 61 and 62 itself. It is thus 

possible for mining devices to know in advance from the value of working variable E at 

rounds 61 and 62 if a particular nonce has produced the required number of 0s and whether 

H2 is less than the target. Hence for most of the time, there is no need to calculate rounds 

63 and 64. In fact, with the pseudo code provided next, many times even round 62 need not 

be calculated for most of the time. 

 
Figure 8: Last 5 Rounds of SHA256 (Example). Source: [43] 

We know that by the end of 64 rounds, in order for the new block to be accepted by the 

network, H + 0x5BE0CD19 must be equal to 0x00000000. With the current target, 

little_endian(G + 0x1F83D9AB) must have a value less than target32 (explained ahead). It is 

evident from the figure above that the two values to be checked are obtained at round 61 (E 
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at t=60) and at round 62 (E at t=61). The logic to be implemented in mining devices is 

explained below in the form of a pseudo code: 

At t=60 if (E  + 0x 5BE0CD19 = 0x 00000000)  

{  

 calculate _round 62()  

 At t=61 if (little_endian(E  + 0x 1F83D9AB) <= target32)  

 {  

  calculate _remaining _r ounds ()  

 }  

}  

else next _nonce()  

 

Here, target32 is the 32 bit value (bits 32-63) of the current target. Hence, for most of the 

cases, the nonce can be early rejected at round 61 thus saving the calculation of three 

rounds of the SHA256 compression function. For some cases, round 62 will also need to be 

calculated and as explained in the pseudo code above, early rejection of the nonce can be 

performed at this round as well. In very few cases all 64 rounds will need to be calculated. 

6.3 Optimisation#3: First 3 Rounds of SHA2561 

 

Figure 9: Input Message Block to SHA2561 

Referring to another excerpt of figure 5 above and as per the message schedule, the 32 bit 

values of Wt to enter the compression function of SHA2561 at rounds 1, 2 & 3 will be the last 

32 bits of hashMerkleRoot, timestamp and target respectively. Two of these values have 

been marked yellow indicating that they will change but relatively very slowly. Target has 

been marked green as it will change relatively after a long time (2016 blocks i.e. after 2 

weeks time). 
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As explained earlier, hashMerkleRoot will change only when someone else finds a new block 

or when the nonce overflows. Even if we assume a very modest hashing rate of our mining 

device to be 10 GH/s, as 10G >> 232, we can safely claim  that the nonce would overflow 

before needing to increment the timestamp by 1. The timestamp will thus be updated only 

when hashMerkleRoot changes. Hence, round 1, 2 & 3 calculations for SHA2561 need to be 

calculated only once i.e. initially or when hashMerkleRoot/timestamp change. The values of 

the working variables A-H at the end of round 3 can be stored as they will remain constant 

for different nonces. Thus, for every new nonce, round calculation can resume from round 4 

where the nonce enters the compression function. This was independently observed and 

has also been pointed out in [19]. 

6.4 Optimisation#4: Round 4 Incremental Calculations 

for SHA2561 

 

Figure 10: Input Message Block to SHA2561 (Nonce) 

As seen from the figure above & the message scheduler equation in section 3.2.2, the 32 bit 

nonce enters at round 4 for SHA2562. Recall the improvement claimed in the previous 

section that the first 3 round computations only need to be done once and the result can be 

used for different nonces. Also, recall the equations [26] for variables A and E in the 

compression function: 

A = H + Ɇ1 (E) + Ch(E, F, G) + Ɇ0 (A) + Maj(A, B, C) + Kt + Wt 

E = D + H + Ɇ 1 (E) + Ch(E, F, G) + Kt + Wt 

Equation 13: Working Variables A and E 

Now, for round 4 of SHA2561, W3 will be the 32 bit nonce. It was observed that for round 4, 

all variables except Wt in both the equations above remain constant. This is because the 
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values of all the working variables are of round 3 and as claimed in the previous 

optimisation, these values will remain constant for most of the time even for different 

nonces. 

Hence, it can be claimed that the entire round 4 calculation only needs to be completed 

once for the initial nonce of 0x00000000. For future nonces, round 4 values of the variables 

A & E can be trivially calculated by incrementing their values from the previous nonce by 1. 

The values for the rest of the working variables will be the same as their values from all the 

previous nonces. Thus, by this optimisation, an entire round of the compression function is 

reduced to two trivial increments. This property was tested practically by running the 

SHA256 algorithm source code taken from [23] and was indeed found to be true. The 

modified source code can be found towards the end of this text in appendix B. The round 4 

values of working variables A & E obtained on execution of the code for nonces 0x00000000 

to 0x00000005 are as follows: 

Nonce A B C D E F G H 

0x00000000 c14c28c6 fdd86aa7 1184d36 2703413e 346785c7 c1abdbc7 8f925db9 a4b56f21 

0x00000001 c14c28c7 fdd86aa7 1184d36 2703413e 346785c8 c1abdbc7 8f925db9 a4b56f21 

0x00000002 c14c28c8 fdd86aa7 1184d36 2703413e 346785c9 c1abdbc7 8f925db9 a4b56f21 

0x00000003 c14c28c9 fdd86aa7 1184d36 2703413e 346785ca c1abdbc7 8f925db9 a4b56f21 

0x00000004 c14c28ca fdd86aa7 1184d36 2703413e 346785cb c1abdbc7 8f925db9 a4b56f21 

0x00000005 c14c28cb fdd86aa7 1184d36 2703413e 346785cc c1abdbc7 8f925db9 a4b56f21 

Table 4: Round 4 Optimisation for SHA2561: Code Execution Results 

For the above execution of code, the value of the last 32 bits of hashMerkleRoot, timestamp 

and target i.e. W0, W1 and W2 respectively, were kept constant at 0xFFFFFFFF. Hence, from 

the above table it is evident that round 4 values of A and E can be trivially computed by 

incrementing their previous nonce values by 1. It can also be seen that all the remaining 

working variables remain constant for different nonces at round 4. Now with this 

optimisation in mind and the one before, we can now claim that for most of the time, the 

computation of SHA2561 can be directly started from round 5! 
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6.5 Optimisation#5: Saving Additions Using the Long 

Trail of 0s for SHA2561 and SHA2562 

According to the Bitcoin block header hashing algorithm discussed in section 5.1, we can 

take advantage of the fact that the length of the input given to SHA2561 and SHA2562 never 

changes. Since the input never changes, as explained in section 3.2.1.1, regarding the 

padding scheme of SHA256, we can pin point exactly what data is contained & where in the 

padding of the input to SHA2561 as well as SHA2562. Recall the padding equation of the 

SHA256 pre-processing stage mentioned in section 3.2.1.1. We shall use that equation to 

calculate the exact value of the inputs to SHA2561 and SHA2562. The padding equation [26] 

is as follows: 

l + 1 + k = 448 mod 512 

Looking back at figure 5 and the block header hashing algorithm, we can conclude that the 

length of the message for SHA2561 is 640 bits (32+256+256+32+32+32). Hence, by the 

above equation, 

k = 1024 - (640 + 1 + 64) = 319 

The input to SHA2561 hence contains 640 bits of the message, followed by bit “1”, then 319 

zero bits and finally the message length (640 = 0x00000280) expressed using 64 bits. 

Similarly for SHA2562,  

k = 512 - (256 + 1 + 64) = 191 

The input to SHA2562 hence contains 256 bits of the message, followed by bit “1”, then 191 

zero bits and finally the message length (256 = 0x00000100) expressed using 64 bits. Based 

on these calculations, the following table contains the values contained in the inputs for 

SHA2561 and SHA2562 along with the round in which they enter the message compression 

algorithm: 
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SHA2561 (For H1) 
 

SHA2562 (For H2) 

Round (t) 
32 bit Wt (In 

Hex) 
Description   Round(t) 

32 bit Wt (In 
Hex) 

Description 

0 XXXXXXXX 
Last 32 Bits of 

hashMerkleRoot  
0 XXXXXXXX H10 

1 XXXXXXXX Timestamp 
 

1 XXXXXXXX H11 

2 XXXXXXXX Target 
 

2 XXXXXXXX H12 

3 XXXXXXXX 
Nonce 

(00000000 to 
FFFFFFFF) 

 
3 XXXXXXXX H13 

4 0x80000000 Padding Starts 
 

4 XXXXXXXX H14 

5 0x00000000 | 
 

5 XXXXXXXX H15 

6 0x00000000 | 
 

6 XXXXXXXX H16 

7 0x00000000 | 
 

7 XXXXXXXX H17 

8 0x00000000 | 
 

8 0x80000000 Padding Starts 

9 0x00000000 | 
 

9 0x00000000 | 

10 0x00000000 | 
 

10 0x00000000 | 

11 0x00000000 | 
 

11 0x00000000 | 

12 0x00000000 | 
 

12 0x00000000 | 

13 0x00000000 Padding Ends 
 

13 0x00000000 Padding Ends 

14 0x00000000 Length 1 
 

14 0x00000000 Length 1 

15 0x00000280 Length 2 
 

15 0x00000100 Length 2 

Table 5: Wt Values for the First 16 Rounds (SHA2561 and SHA2562) 

From the table it is evident that rounds 6 to 15 (10 rounds) for SHA2561 and rounds 10 to 15 

(6 rounds) for SHA2562 will always have Wt = 0x00000000. It is also worth noticing that the 

values follow the same colour coding as mentioned earlier. All variable values have been 

shown as 0xXXXXXXXX. Mining devices can take advantage of these long trails of 0s as for 

the rounds mentioned above, we can potentially save an addition per round. Mining devices 

can implement some logic where for the mentioned rounds; the value of Kt can be directly 

fed instead of the value of Kt + Wt. Hence with this optimisation, 10 additions per nonce can 

be saved for SHA2561 and 6 additions per nonce can be saved for SHA2562. Therefore, a 
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total of 16 additions can be saved per nonce using this optimisation. As nonces are in 

billions, this improvement is definitely non-negligible and will aid in faster and more 

efficient Bitcoin mining.  It needs to be mentioned that this optimisation wouldn’t have 

been possible for generic SHA256 hashing as the length of the message is always variable. In 

Bitcoin mining, we are taking advantage of the fact that the length of the message will 

always remain constant and hence saving a non-negligible amount of additions (16 to be 

exact) per nonce. It is also important to remark that there is a possibility for a similar 

optimisation in SHA2560 during the calculation of H0. This is due to the presence of the trail 

of 0s in hashPrevBlock. However, referring to optimisation#1 in section 6.1, we now know 

that H0 needs to be calculated only once. Hence, such optimisation for SHA2560 doesn’t 

really have a non-negligible impact on the mining device’s throughput or power 

consumption. 

6.6 Optimisation#6: Saving Additions with Hard 

Coding 

SHA2561 (For H1) 
 

SHA2562 (For H2) 

Round(t) 
32 bit Wt (In 

Hex) 
Description   Round(t) 

32 bit Wt (In 
Hex) 

Description 

4 0x80000000 Padding Starts 
 

8 0x80000000 Padding Starts 

15 0x00000280 Length 2 
 

15 0x00000100 Length 2 

Table 6: Where Wt + Kt Can Be Hardcoded (SHA2561 and SHA2562) 

From the table above, it is observed that the value of Wt for SHA2561 will always be 

0x80000000 and 0x00000280 for rounds 5 and 16 respectively. Similarly for SHA2562, the 

value of Wt for rounds 9 and 16 will always be 0x80000000 and 0x00000100 respectively. 

We can take advantage of this fact and change the table of constants for SHA2561 and 

SHA2562 with values calculated as follows11: 
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 Refer to the appendix for the SHA256 round specific constants (Kt) 
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¶ For SHA2561, at round 16, W15+K15 can be hardcoded as 
0x00000280+0xc19bf174=0xc19bf3f4. The same is true in Round 16 for SHA2562 
where W15+K15 can be hardcoded as 0x00000100+0xc19bf174=0xc19bf274.  

 

¶ A similar technique can be applied to Round 5 for SHA2561 and Round 9 for SHA2562. 
Hardcode with 0x80000000+0x3956c25b=0xb956c25b for SHA2561 and 
0x80000000+0xd807aa98=0x5807aa98 for SHA2562. 

 

The point in doing this is that we are saving 4 more additions (Wt + Kt) per nonce. These new 

constants can be updated in the constants table Kt for SHA2561 as well as SHA2562. The 

new, Bitcoin specific constants are provided in the table below. It is important to remember 

that the rest of the constants still remain the same. 

SHA2561 (For H1) 
 

SHA2562 (For H2) 

Round(t) 
Previous value 

for Kt 
New Value for Kt   Round(t) 

Previous 
value for Kt 

New Value for Kt 

4 0x3956c25b 0xb956c25b 
 

8 0xd807aa98 0x5807aa98 

15 0xc19bf174 0xc19bf3f4 
 

15 0xc19bf174 0xc19bf274 

Table 7: New Values for Bitcoin Specific Constants (SHA2561 and SHA2562) 

This improvement combined with the previous optimisation in section 7.5 will now allow 

mining devices to save 20 additions per nonce. This is indeed a significant amount of savings 

in calculations. It can be speculated that having different table of constants for different 

applications of the SHA256 algorithm would be sort of an overhead but this overhead is 

negligible towards the number of additions being saved per round. The importance of these 

savings can be further emphasised from the fact that for each nonce, 2X64 rounds of 

SHA256 hashing is performed by mining devices. These mining devices frequently overflow 

the nonce which typically goes from 0 to 232 which is as large as 4294967296! 

6.7 Optimisation#7: Message Scheduler Bypass for 

Certain Rounds 

This optimisation is an offshoot of the previous two optimisations viz. section 6.5 and 6.6. 

With these two optimisations in place, the compression function does not depend on the 

message scheduler for some particular rounds. At these rounds, calculations can thus be 
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made directly by the compression function without waiting for the message scheduler. 

There will be no propagation delay as the value of Kt will be directly fed to the compression 

function.  The rounds for which this optimisation is possible are mentioned below: 

For SHA2561 Rounds 5 to 16 (12 in total) 

For SHA2562 Rounds 9 to 16 (8 in total) 

It is worth mentioning that the message scheduler will still have to keep track of all Wt for 

future round values. 

6.8 Optimisation#8: Constant Message Schedule for 

SHA2561 

For Round 17 of SHA2561, W16 need not be calculated most of the times as it is observed 

that it will mostly remain constant and independent of the nonce. The proof of which is 

mentioned below: 

For 16 ≤ t ≤ 63, we have,  

Wt = 1(Wt-2) + Wt-7 + 0(Wt-5) + Wt-16 

Therefore, W16 = 1(W14) + W9 + 0(W1) + W0 

Hence, W16 = 0 + 0 + 0(W1) + W0  

Equation 14: Calculation for W16 

This is because W14 and W9 will always be equal to 0x00000000 for SHA2561. This means 

that W16 only depends on W1 (Timestamp) and W0 (Last 32 bits of hashMerkleRoot). This in 

turn means that W16 will only have to be calculated once and it will remain constant even 

for different nonces. Like earlier optimisations, W16 will have to be calculated again after the 

timestamp gets incremented or if hashMerkleRoot changes. But this will relatively be a very 

uncommon event. 

Similarly, for Round 18, W17 need not be calculated most of the times as it is observed that it 

will mostly remain constant and independent of the nonce. The proof of which is mentioned 

next: 
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For 16 ≤ t ≤ 63, we have,  

Wt = 1(Wt-2) + Wt-7 + 0(Wt-5) + Wt-16 

Therefore, W17 = 1(W15) + W10 + 0(W2) + W1 

Hence, W17 = 1(0x00000280) + 0 + 0(W2) + W1  

Equation 15: Calculation for W17 

This is because W15 and W10 will always be equal to 0x00000280 and 0x00000000 

respectively for SHA2561. This means that W17 only depends on W2 (Target) and W1 

(Timestamp). This in turn means that W17 will only have to be calculated once and it will 

remain constant even for different nonces. Like earlier optimisations, W17 will have to be 

calculated again after the timestamp gets incremented. But this will relatively be a very 

uncommon event. Moreover, there is also a short cut method to calculate W17 after the 

timestamp is incremented by 1. The mining device will just have to be increment the 

previous value of W17 by 1 after the timestamp gets incremented by 1. The claims made in 

this optimisation were confirmed practically by executing the message scheduler code for 

different nonces. The source code is available in appendix C and the results of this are 

posted below: 

W0 0xffffffff 0xffffffff 0xffffffff 0xffffffff 0xffffffff 

W1 0xffffffff 0xffffffff 0xffffffff 0xffffffff 0xffffffff 

W2 0xffffffff 0xffffffff 0xffffffff 0xffffffff 0xffffffff 

W3 0x00000000 0x00000001 0x00000002 0x00000003 0x00000004 

W4 0x80000000 0x80000000 0x80000000 0x80000000 0x80000000 

W5 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000 

W6 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000 

W7 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000 

W8 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000 

W9 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000 

W10 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000 

W11 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000 

W12 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000 

W13 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000 

W14 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000 

W15 0x00000280 0x00000280 0x00000280 0x00000280 0x00000280 

W16 0x1ffffffe 0x1ffffffe 0x1ffffffe 0x1ffffffe 0x1ffffffe 

W17 0x210ffffe 0x210ffffe 0x210ffffe 0x210ffffe 0x210ffffe 

Table 8: Code Execution Results for Constant Wt with Different Nonces 
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6.9 Optimisation#9: Incremental Message Schedule 

Calculation at Round 20 for SHA2561 

For Round 20, W19 for most of the time can be calculated without the message scheduling algorithm 

by simply incrementing the W19 value from the previous nonce by 1. The proof of which is 

mentioned below: 

W19 = 1(W17) + W12 + 0(W4) + W3 

Hence, W19 = 1(W17) + 0 + 0(0x80000000) + W3 

Equation 16: Calculation for W19 

W17 (as explained in the previous section) will remain constant for most of the time. W12 and W4 will 

always remain constant as explained earlier with values 0x00000000 and 0x80000000 respectively. 

Thus, W19 only depends on the value of W3 which happens to be the nonce. Thus with every 

increment of the nonce, W19 can be directly calculated by incrementing W19 from the previous nonce 

by 1. A noteworthy remark is that W19 will have to be calculated again whenever the timestamp is 

incremented. This is because W17 will change with the timestamp. Using this optimisation, we are 

saving an entire message schedule calculation for a round and reducing it to just one increment. The 

source code is available in appendix C and the results of that code execution are given below: 

W0 0xffffffff 0xffffffff 0xffffffff 0xffffffff 0xffffffff 

W1 0xffffffff 0xffffffff 0xffffffff 0xffffffff 0xffffffff 

W2 0xffffffff 0xffffffff 0xffffffff 0xffffffff 0xffffffff 

W3 0x00000000 0x00000001 0x00000002 0x00000003 0x00000004 

W19 0x1108b759 0x1108b75a 0x1108b75b 0x1108b75c 0x1108b75d 

Table 9: Code Execution Results for W19 with Different Nonces 

6.10 Optimisation#10: Saving Additions by Dynamic 

Hard Coding for SHA2561 

This optimisation is an offshoot of the combined effect of optimisations mentioned in 

sections 6.6, 6.7, 6.8 and 6.9. With the results obtained from the optimisations presented in 

these sections, it can be claimed that once Wt is calculated for rounds 17, 18 & 20 for the 

initial nonce of 0x00000000, it is possible to predict their values for the next nonces. W16 

and W17 will remain constant while W19 can be calculated by a mere increment. As they are 
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predictable, the table of constants can be dynamically updated after the initial calculation 

has been performed. The table of constants can be populated with the following values:  

Dynamically hardcoded new values: 

K16 = 0xXXXXXXXX + 0xe49b69c1 

K17 = 0xXXXXXXXX + 0xefbe4786 

K19 = 0xXXXXXXXX + 0x240ca1cc 

Equation 17: Calculation of Dynamic Hard coding Values for K16, K17 and K19 

Here, 0xXXXXXXXX represents the variable values of Wt at t = 16, 17 and 19 that technically 

need to be calculated only once. The calculations for Kt mentioned above will only need to 

be done once and then replace the original constants for those rounds. By doing so, the 

mining devices will not have to perform the additions of Wt + Kt for rounds 17, 18 and 20 as 

well.  

For rounds 17 and 18, the new value of Kt can be fed directly to the message compression 

function instead of Wt + Kt until the values of hashMerkleRoot and Timestamp remain 

constant. As for round 20, the new value of Kt will have to be incremented by 1 for every 

increment in the nonce and fed directly to the message compression function. Doing so will 

save 3 additions per nonce. Also, as explained earlier, directly feeding Kt instead of Wt + Kt 

will also reduce the propagation delay involved as the compression function can be directly 

fed with the needed values without the need of the message scheduler. Hence, combining 

these results with our previous saving of 20 additions per nonce, we can now claim of saving 

23 additions per nonce. 

Detailed quantitative analyses of the optimisations presented in this chapter are presented 

in the discussion section that follows next. We shall make use of the SHA256 bitwise 

operations analysis presented in section 3.3 to decide the number of bitwise operations 

saved by the optimisation suggestions made in this chapter. By doing do, the reader will 

have an idea of the impact of these improvements in the throughput and power 

consumption of Bitcoin mining devices. 
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Chapter 7: Discussion 

7.1 Analysis of the Savings Made in Bitcoin Mining 

Calculations 

The optimisations suggested in the previous chapter need to be analysed in order to 

quantitatively determine the savings introduced in the calculations. We will assume that 

optimisation#1 in section 6.1 has already been implemented in most Bitcoin mining devices 

and thus, we can arrive at a decision that Bitcoin mining essentially involves a dual 

application of the SHA256 hashing algorithm (SHA2561 and SHA2562) rather than a triple 

application of SHA256 (SHA2560, SHA2561 and SHA2562). Therefore Bitcoin mining 

essentially involves applying SHA256 with a factor of 2 i.e. the SHA256 algorithm applied 

twice to the Bitcoin block header in order to obtain H2. Recalling the calculations performed 

in section 3.3, we shall perform similar calculations in order to determine the total number 

of rounds and/or operations saved with the optimisations suggested. We shall perform 

separate calculations of the savings made in SHA2561 and SHA2562. Also, these savings will 

be calculated on a per-suggested-optimisation basis so that each saving made is clearly 

understood by the reader. We follow that up with a summary of the savings. The table 

below performs the calculations: 

SHA256 Application Optimisation Calculations Saved 

SHA2560 
#1 - The Calculation of H0 for 
SHA2560 

None 

SHA2561 

#3 - First 3 Rounds of SHA2561 SHA256 Rounds: 3 

#4 - Round 4 Incremental 
Calculations for SHA2561 

SHA256 Rounds: 1 

#5 - Saving Additions Using the 
Long Trail of 0s for SHA2561 

Mod 232 additions:  10 

#6 - Saving Additions with Hard 
Coding 

Mod 232 additions: 2 

#8 - Constant Message 
Schedule for SHA2561 

2 calculations of 
Message Scheduler 
Mod 232 additions: 3*2=6 
Bitwise Rotations: 4*2=8 
Bitwise Shifts: 2*2=4 
Bitwise AND: 0 
Bitwise EX-OR: 4*2=8 
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#9 - Incremental Message 
Schedule Calculation at Round 
20 for SHA2561 

1 calculation of Message 
Scheduler 
Mod 232 additions: 3*1=3 
Bitwise Rotations: 4*1=4 
Bitwise Shifts: 2*1=2 
Bitwise AND: 0 
Bitwise EX-OR: 4*1=4 

#10 - Saving Additions by 
Dynamic Hard Coding for 
SHA2561 

Mod 232 additions: 3 

SHA2562 

#2 - Early Rejection at Rounds 
61 and 62 for SHA2562 

SHA256 Rounds: 3 

#5 - Saving Additions Using the 
Long Trail of 0s for SHA2562 

Mod 232 additions:  6 

#6 - Saving Additions with Hard 
Coding 

Mod 232 additions: 2 

The table that now follows is a summary of the total savings introduced by these algorithm 

optimisations suggested in this thesis: 

SHA2561 

SHA256 Rounds: 4 
Mod 232 additions: 24 
Bitwise Rotations: 12 
Bitwise Shifts: 6 
Bitwise AND: 0 
Bitwise EX-OR: 12 

SHA2562 

SHA256 Rounds: 3 
Mod 232 additions: 8 
Bitwise Rotations: 0 
Bitwise Shifts: 0 
Bitwise AND: 0 
Bitwise EX-OR: 0 

Table 10: Summary of Savings Made Due to the Algorithm Optimisations 

We shall now calculate the average number of different operations calculated per round of 

the SHA256 Hashing Algorithm. We calculate the average as not every round has the same 

number of operations. This is because the message scheduler calculations start from round 

17 (i.e. t=16) onwards. The table below mentions the details of the average operations per 

round of SHA256. This calculation needs to be done as it will provide us with an 

approximation of converting the saved operations to SHA256 rounds. Knowing this will 

allow us to calculate a constant Savings Factor as compared to applying SHA256 twice. 
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Additions (Mod 232) 7 + (3*48/64) = 7 + (3*0.75) = 9.25 

Bitwise Rotations (ROTR) 6 + (4*48/64) = 6 + (4*0.75) = 9 

Bitwise Shifts (SHR) 2*48/64 = 1.5 

Bitwise AND ( )᷈ 5 

Bitwise EX-OR (ṥ) 7 + (4*48/64) = 7 + (4*0.75) = 10 

Table 11: Average Operations per Round of SHA256 

With the above calculations in mind, we first calculate the savings based on the complete 

round computations that we have saved. For most of the time, we essentially need to 

compute only 60 out of 64 rounds of SHA2561 and 61 out of 64 rounds of SHA2562. Hence: 

Savings Factor = 60/64 + 61/64 å 0.9375 + 0.9535 å 

1.891 

Equation 18: Savings Factor Initial Calculation 

The savings factor calculated till now means that instead of computing 2*SHA256, miners 

will now need to compute only 1.891*SHA256 in order to calculate the same H2. Now, in 

order to include the other granular savings, we will need to make an approximation opting 

for a simplifying assumption that all operations take the same time to execute i.e. they have 

the same latency. Although this isn’t accurately true, we are making this assumption to 

simplify our calculations whilst keeping the results of our calculations reasonably close to 

the truth. It was seen from [27] that almost all the involved operations use the same 

amount of clock cycles in all types of CPUs. We now try and include the other savings 

introduced with the rest of the suggested optimisations: 

For SHA2561: ((24/9.25)+(12/9)+(6/1.5)+0+(12/10))/5 = (2.5946+1.334+3+0+1.2)/5 å  1.6257 

For SHA2562: ((8/9.25)+0+0+0+0)/5 å 0.8649/5 å 0.173 

We now include these savings in our calculation for our Savings Factor: 

Savings Factor = (60-1.6257)/64 + (61-0.173)/64 å 0.912 + 0.9504 å 

1.8624 

Equation 19: Savings Factor Final Calculation 
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What this number effectively means is that by implementing the suggested optimisations, 

miners will now be able to calculate H2 not by applying SHA256 twice but rather applying 

SHA256 1.8624 times which is a significant reduction considering the fact that around 

500GigaHashes/sec can be calculated by a single ASIC mining device and 507.38 

TeraHashes/sec are currently being calculated the entire Bitcoin network! 

7.2 Summary, Limitations and Future Work 
We can now summarize the contribution of this thesis by mentioning that by optimising the 

SHA256 hashing algorithm, we were able to improve the Bitcoin mining process from 

2xSHA256 to approximately 1.8624xSHA256. This effectively means that Bitcoin mining 

devices can now achieve the same hashing rate with lower power consumption or mining 

devices can have a higher hash rate with the same power consumption as earlier. 

Having said that, it can be acknowledged that the Savings Factor of 1.8624 determined in 

this thesis is not completely accurate. We have crudely tried to represent the operations in 

terms of SHA256 rounds and while we have a figure quite close to accuracy, for a truly 

accurate figure, we will need to implement these optimisations. For a perfectly accurate 

determination of the computational improvements introduced with these optimisations, 

ideally, mining devices employing both off-the-shelf and the optimised version of SHA256 

will need to be implemented on a common platform. They would then need to be 

benchmarked and their performances would need to be compared. This would give a 

measure of the real world performance of the implemented optimisations and give us a 

more accurate Savings Factor. It can be claimed that the Savings Factor presented in this 

thesis will be reasonably close to the one calculated after implementation, benchmarking 

and comparison. 

It would also be important to mention that much of the optimisations were designed and 

suggested by taking advantage of the fixed or predictable nature of the input given to the 

hashing function in Bitcoin mining. Hence, generic SHA256 hashing cannot be performed 

once these improvements have been implemented. Also, much of the omprovements have 

been more concentrated on SHA2561 and much less optimisations have been suggested for 

SHA2562. Perhaps more complex methodologies like logic minimisation techniques and 

circuit optimisations [13] [14] [18] could be employed to achieve further optimisations. 
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Possibly some progress in more optimisations could also be made by applying the research 

findings on analyses of simplified and step-reduced SHA256 [38] [40] [48]. Maybe such 

techniques can even make use of the fixed or predictable nature of the Bitcoin block hashing 

algorithm process and perhaps be able to achieve more optimisations that are specific for 

Bitcoin mining. 

This thesis was more of a theoretical approach towards studying and optimising SHA256 for 

Bitcoin mining. Although an open source SHA256 program [34] in C was utilised in order to 

verify the claims made in the optimisations suggested, we would need these improvements 

to be implemented in hardware and its performance will have to be compared against a 

standard SHA256 core used for Bitcoin mining. This shall be left as future work. 

Moreover, how these optimisations will work in tandem with the existing hardware 

optimisations of SHA256 mentioned in chapter 4 needs to be determined as well. A critical 

evaluation of these algorithm optimisations will need to be performed and their 

compatibility with existing hardware optimisations will need to be assessed as well. Based 

on the results of these findings, either of the two i.e. algorithm optimisations or hardware 

optimisations will need to be tweaked or amended as necessary. 
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Chapter 8: Conclusion 

The foremost aim of this thesis was to propose optimisations in the SHA256 hashing 

algorithm that were specific to Bitcoin mining. This aim was motivated by the fact that many 

hardware based optimisations in SHA256 hardware implementations have already been 

suggested but they have been aimed at the SHA256 hashing algorithm in general.  

With that in mind, the primary contribution made in this thesis has been the SHA256 

algorithm optimisation suggestions that are specific to Bitcoin mining. Due to these 

suggested optimisations, it has been claimed that Bitcoin miners will now need to compute 

SHA256 only 1.8624 times in order to calculate H2 once as opposed to the normal 2 times. 

An improvement proposal was also made regarding the Bitcoin mining reward halving cycle 

with a view to introduce linearity in the reward given to miners for mining new Bitcoins. The 

thesis also made an attempt to organise background information as well as the related 

information which would be needed in order to fully comprehend what was being 

suggested. A discussion has also been made regarding the accuracy of the Savings Factor 

and the need for implementing and comparing Bitcoin mining as performed by off-the-shelf 

SHA256 and the optimised version of SHA256 for a more accurate quantification of this 

Savings Factor. The need for a critical analysis of the algorithm optimisations’ compatibility 

with existing hardware optimisations has also been discussed. 

It is believed that the suggested optimisations will bring about radical throughput 

improvements in Bitcoin mining devices. They will also allow Bitcoin miners to make a lot of 

savings in their electricity bills. It was decided to make all this information public with the 

vision of the betterment of the Bitcoin community and it is hoped that these findings will be 

a stepping stone to faster and more efficient Bitcoin mining. 

“Vires in Numeris”
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Appendix A: SHA256 Constants (Kt) 

K0 = 0x428A2F98; K1 = 0x71374491; K2 = 0xB5C0FBCF; K3 = 0xE9B5DBA5;  

K4 = 0x3956C25B; K5 = 0x59F111F1; K6 = 0x923F82A4; K7 = 0xAB1C5ED5;  

K8 = 0xD807AA98; K9 = 0x12835B01; K10 = 0x243185BE; K11 = 0x550C7DC3;  

K12 = 0x72BE5D74; K13 = 0x80DEB1FE; K14 = 0x9BDC06A7; K15 = 0xC19BF174;  

K16 = 0xE49B69C1; K17 = 0xEFBE4786; K18 = 0x0FC19DC6; K19 = 0x240CA1CC;  

K20 = 0x2DE92C6F; K21 = 0x4A7484AA; K22 = 0x5CB0A9DC; K23 = 0x76F988DA;  

K24 = 0x983E5152; K25 = 0xA831C66D; K26 = 0xB00327C8; K27 = 0xBF597FC7;  

K28 = 0xC6E00BF3; K29 = 0xD5A79147; K30 = 0x06CA6351; K31 = 0x14292967;  

K32 = 0x27B70A85; K33 = 0x2E1B2138; K34 = 0x4D2C6DFC; K35 = 0x53380D13;  

K36 = 0x650A7354; K37 = 0x766A0ABB; K38 = 0x81C2C92E; K39 = 0x92722C85;  

K40 = 0xA2BFE8A1; K41 = 0xA81A664B; K42 = 0xC24B8B70; K43 = 0xC76C51A3;  

K44 = 0xD192E819; K45 = 0xD6990624; K46 = 0xF40E3585; K47 = 0x106AA070;  

K48 = 0x19A4C116; K49 = 0x1E376C08; K50 = 0x2748774C; K51 = 0x34B0BCB5;  

K52 = 0x391C0CB3; K53 = 0x4ED8AA4A; K54 = 0x5B9CCA4F; K55 = 0x682E6FF3;  

K56 = 0x748F82EE; K57 = 0x78A5636F; K58 = 0x84C87814; K59 = 0x8CC70208;  

K60 = 0x90BEFFFA; K61 = 0xA4506CEB; K62 = 0xBEF9A3F7; K63 = 0xC67178F2; 
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Appendix B: SHA256 Implementation in C 

#include <stdio.h>  

#include <math.h>  

 

 

// Shift right   

#define SHR(x,n) ((x & 0xFFFFFFFF) >> n)  

 

 

// Rotate right  

#define ROTR(x,n) (SHR(x,n) | (x << (32 -  n)))  

  

 

// 0 and 1 

#define S0(x) (ROTR(x, 7) ^ ROTR(x,18) ^  SHR(x, 3))  

#define S1(x) (ROTR(x,17) ^ ROTR(x,19) ^  SHR(x,10))  

 

 

// Ɇ0 and Ɇ1 

#define S2(x) (ROTR(x, 2) ^ ROTR(x,13) ^ ROTR(x,22))  

#define S3(x) (ROTR(x, 6) ^ ROTR(x,11) ^ ROTR(x,25))  

 

// Maj and Ch  

#define F0(x,y,z) ((x & y) | (z & (x | y)))  

#define F1(x,y,z) (z ^ (x & (y ^ z)))  

  

void main ()  

{  

    unsigned long W[64], K [64];  

    unsigned long A, B, C, D, E, F, G, H, temp1, temp2;  

    int t;  

 

//  Initialising working variables with some random hash value  

    A = 0x641711d4; B = 0x71a975e1; C = 0x80b27340; D = 0xaa475500;  

    E = 0x8ef0a0b9; F = 0x7d2f14fd; G = 0x87dca129; H = 0x215da880;  

 

//  Hard coding the fixed W t  for the first 16 rounds  

    W[0] = 0xFFFFFFFF; W[1] = 0xFFFFFFFF; W[2] = 0xFFFFFFFF; W[3] = 0x00000005;  

    W[4] = 0x80000000; W[5] = 0x00000000; W[6] = 0x00000000; W[7] = 0x00000000;  

    W[8] = 0x00000000; W[9]  = 0x00000000; W[10] = 0x00000000; W[11] = 0x00000000;  

    W[12] = 0x00000000; W[13] = 0x00000000; W[14] = 0x00000000; W[15] = 0x00000280;  
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//SHA256 constants K t  

    K[0] = 0x428A2F98; K[1] = 0x71374491; K[2] = 0xB5C0FBCF; K[3] = 0xE9B5DBA5;  

    K[4] = 0 x3956C25B; K[5] = 0x59F111F1; K[6] = 0x923F82A4; K[7] = 0xAB1C5ED5;  

    K[8] = 0xD807AA98; K[9] = 0x12835B01; K[10] = 0x243185BE; K[11] = 0x550C7DC3;  

    K[12] = 0x72BE5D74; K[13] = 0x80DEB1FE; K[14] = 0x9BDC06A7; K[15] = 0xC19BF174;  

    K[16] = 0xE49B6 9C1; K[17] = 0xEFBE4786; K[18] = 0x0FC19DC6; K[19] = 0x240CA1CC;  

    K[20] = 0x2DE92C6F; K[21] = 0x4A7484AA; K[22] = 0x5CB0A9DC; K[23] = 0x76F988DA;  

    K[24] = 0x983E5152; K[25] = 0xA831C66D; K[26] = 0xB00327C8; K[27] = 0xBF597FC7;  

    K[28] = 0xC6E00B F3; K[29] = 0xD5A79147; K[30] = 0x06CA6351; K[31] = 0x14292967;  

    K[32] = 0x27B70A85; K[33] = 0x2E1B2138; K[34] = 0x4D2C6DFC; K[35] = 0x53380D13;  

    K[36] = 0x650A7354; K[37] = 0x766A0ABB; K[38] = 0x81C2C92E; K[39] = 0x92722C85;  

    K[40] = 0xA2BFE8A 1; K[41] = 0xA81A664B; K[42] = 0xC24B8B70; K[43] = 0xC76C51A3;  

    K[44] = 0xD192E819; K[45] = 0xD6990624; K[46] = 0xF40E3585; K[47] = 0x106AA070;  

    K[48] = 0x19A4C116; K[49] = 0x1E376C08; K[50] = 0x2748774C; K[51] = 0x34B0BCB5;  

    K[52] = 0x391C0CB3 ; K[53] = 0x4ED8AA4A; K[54] = 0x5B9CCA4F; K[55] = 0x682E6FF3;  

    K[56] = 0x748F82EE; K[57] = 0x78A5636F; K[58] = 0x84C87814; K[59] = 0x8CC70208;  

    K[60] = 0x90BEFFFA; K[61] = 0xA4506CEB; K[62] = 0xBEF9A3F7; K[63] = 0xC67178F2;  

  

//  Calculating W t  val ues after round 16  

    for(t=16;t<64;t++)  

    {  

        W[t] = S1(W[t -   2]) + W[t -   7] + S0(W[t -  15]) + W[t -  16];  

    }  

 

// Message compression  

    for(t=0;t<64;t++)  

    {  

 temp1 = H + S3(E) + F1(E,F,G) + K[t] + W[t];  

     temp2 = S2(A) + F0(A,B,C);  

    H = G; G = F; F = E; E = D + temp1;  

     D = C; C = B; B = A;  

     A = temp1 + temp2;  

 

        // Printing out the values at the end of round 4  

        if(t==3)  

        {  

         printf("%x %x %x %x %x %x %x %x %x \ n", W[t], A, B, C, D, E, F, G, H);  

 }  

    }  

}  
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Appendix C: H1 Message Schedule 

Calculation in C 

#include <stdio.h>  

#include <math.h>  

 

// Shift right  

#define SHR(x,n) ((x & 0xFFFFFFFF) >> n)  

 

// Rotate right  

#define ROTR(x,n) (SHR(x,n) | (x << (32 -  n)))  

  

// 0 and 1 

#define S0(x) (ROTR( x, 7) ^ ROTR(x,18) ^  SHR(x, 3))  

#define S1(x) (ROTR(x,17) ^ ROTR(x,19) ^  SHR(x,10))  

  

void main ()  

{  

    unsigned long W[64];  

    int t;  

 

// Hard coding the fixed W t  for the first 16 rounds  

    W[0] = 0xFFFFFFFF; W[1] = 0xFFFFFFFF; W[2] = 0xFFFFFFFF; W[3 ] = 0x00000005;  

    W[4] = 0x80000000; W[5] = 0x00000000; W[6] = 0x00000000; W[7] = 0x00000000;  

    W[8] = 0x00000000; W[9] = 0x00000000; W[10] = 0x00000000; W[11] = 0x00000000;  

    W[12] = 0x00000000; W[13] = 0x00000000; W[14] = 0x00000000; W[15] = 0x0000 0280;  

 

// Calculating W t  values after round 16   

    for(t=16;t<64;t++)  

    {  

        W[t] = S1(W[t -   2]) + W[t -   7] + S0(W[t -  15]) + W[t -  16];  

    }  

// Printing W t  values for rounds 17, 18 and 20  

    for(t= 16;t< 18;t++)  

    {  

        printf("%d) %x \ n",t +1,W[t]);  

    }  

    printf(" 20) %x \ n" ,  W[19]);  

}  

 


